
Commit Comments
Canonical version of this page is at https://wiki.lustre.org/Commit_Comments

Contents:

Commit message content
Commit message format
The Signed-off-by: line
The Change-Id: line and Code Style
Additional commit tags
Examples of good commit comments
Patch porting examples

Patches ported from master to maintenance branch
Patches ported from master to upstream kernel

Recent edits:

User Edits Last Update

Andreas Dilger 23 771 days ago

Michael Kvardakov 1 1162 days ago

Commit message content

Writing good commit comments is critical to ensuring that changes are easily understood, even years after they were originally written. The commit
comment should contain enough information about the change to allow the reader to understand the motivation for the change, what parts of the code it is
affecting, and any interesting, unusual, or complex parts of the change to draw attention to.

The reason for a change may be manyfold: bug, enhancement, feature, code style, etc. so providing information about this sets the stage for
understanding the change. If it is a bug, include information about what usage triggers the bug and how it manifests (error messages, LBUG, etc). If it is a
feature, include information about what improvement is being made, and how it will affect usage.

Providing some high-level information about the code path that is being modified is useful for the reader, since the files and patch fragments are not
necessarily going to be listed in a sensible order in the patch. Including the important functions being modified provides a starting point for the reader to
follow the logic of the change, and makes it easier to search for such changes in the future.

If the patch is based on some earlier patch, then including the git commit hash of the original patch, Jira ticket number, etc. is useful for tracking the chain
of dependencies. This can be very useful if a patch is landed separately to different maintenance branches, if it is fixing a problem in a previously landed
patch, or if it is being imported from an upstream kernel commit.

Having long commit comments that describe the change well is a good thing. The commit comments will be tightly associated with the code for a long time
into the future, even many of the original commit comments from years earlier are still available through changes of the source code repository. In contrast,
bug tracking systems come and go, and cannot be relied upon to track information about a change for extended periods of time.

Commit message format

Unlike the content of the commit message, the format is relatively easy to verify for correctness. Having the same standard format allows Git tools like git
 to extract information from the patches more easily.shortlog

The first line of the commit comment is the commit summary of the change. Changes submitted to the branch require a Lustre Jira fs/lustre-release
ticket number at the beginning of the commit summary. A Lustre Jira ticket is one that begins with LU and is therefore part of the Lustre project within
Jira. For patches to other projects, such as documentation, a different JIRA project should be used (e.g.). If the patch is submitted for the LUDOC fs

 repository without a Lustre Jira ID in the first line, then it will automatically receive a -2 review which will prevent the patch from being /lustre-release
submitted to a release branch. You would then need to fix the summary line and resubmit the patch.

The commit summary should also have a tag immediately following the Jira ticket number that indicates which Lustre subsystem that the component:
commit is related to. Example Lustre subsystems relate to modules like: llite, lov, osc, mdc, lmv, ldlm, ptlrpc, mds, oss, mdd, osd-

; functional components like ; or auxiliary ldiskfs, osd-zfs, ldiskfs, lnet, libcfs, socklnd, o2iblnd recovery, quota, grant
components like . This subsystem list is not exhaustive, but provides a good guideline for consistency.build, tests, iokit, docs

The commit summary line must be 62 characters or less, including the Jira ticket number and component tag, so that and git shortlog git format-
 can fit the summary onto a single line. The summary must be followed by a blank like. The rest of the comments should be wrapped to 70 columns patch

or less. This allows for the first line to be used a subject in emails, and also for the entire body to be displayed using tools like or git log git shortlog
in an 80 column window.

https://wiki.lustre.org/Commit_Comments#Commit_message_content
https://wiki.whamcloud.com/display/~adilger
https://wiki.whamcloud.com/display/~mkvardakov

LU-nnn component: short description of change under 62 columns

The "component:" should be a lower-case single-word subsystem of the
Lustre code that best encompasses the change being made. Examples of
components include modules: llite, lov, lmv, osc, mdc, ldlm, mds, oss,
ptlrpc, osd-ldiskfs, osd-zfs, ldiskfs, lnet, socklnd, o2iblnd, libcfs;
functional subsystems: recovery, quota, grant; and auxiliary areas:
build, tests, docs. This list is not exhaustive, but is a guideline.

The commit comment should contain a detailed explanation of changes
being made. This can be as long as you'd like. Please give details
of what problem was solved (including error messages or problems that
were seen), a good high-level description of how it was solved, and
which parts of the code were changed (including important functions
that were changed, if this is useful to understand the patch, and
for easier searching). Wrap lines at/under 70 columns.

Signed-off-by: Your Real Name <your_email@domain.name>
Change-Id: Ixxxx(added automatically if missing)xxxx

The Signed-off-by: line

The line asserts that you have permission to contribute the code to the project according to the .Signed-off-by: Developer's Certificate of Origin

The Change-Id: line and Code Style

Gerrit needs to automatically identify updates to existing patches and update the existing change instead of creating a new one for each patch submitted.
This preserves the history of patch comments, and allows comparing old and new versions of a patch for more efficient inspections. For this to work
properly the changes you create locally need to have a unique commit id in them. The same line should be used for all versions of a patch.Change-Id:

Please make sure the line and lines are at the bottom of the comment. This is required by the Change-Id: Signed-off-by: fs/lustre-release
and other projects in order for the patch to be approved. If your comments are missing either of these lines the patch will be automatically be rejected at
submission time.

The field is inserted automatically into the commit message by installing the hook into each Git Change-Id: contrib/git-hooks/commit-msg
repository's directory. The script should be installed as well. From the top-level Lustre tree .git/hooks/ contrib/git-hooks/prepare-commit-msg
checkout:

ln -sf ../../contrib/git-hooks/commit-msg .git/hooks/
ln -sf ../../contrib/git-hooks/prepare-commit-msg .git/hooks/

At time this will run the script from the currently Lustre tree to check the code changes for style errors using git commit prepare-commit-msg contri
, and add comments at the end of the commit message with any warnings or errors. After the commit message has been saved, the b/checkpatch.pl co

 script will verify that the commit message format matches the format specified above, and insert the field into the commit mmit-msg Change-Id:
message, if one isn't already present.

Additional commit tags

A number of additional commit tags can be used to further explain who has contributed to the patch, and for tracking purposes. These tags are commonly
used with Linux kernel patches. These tags should appear before the tag.Signed-off-by:

Acked-by: User Name <user@domain.com>
Tested-by: User Name <user@domain.com>
Reported-by: User Name <user@domain.com>
Reviewed-by: User Name <user@domain.com>
Test-Parameters: additional testing parameters
CC: User Name <user@domain.com>
{Organization}-bug-id: arbitrary bug tracking identifier
Lustre-commit: {git commit hash of original patch}
Lustre-change: {Gerrit change URL of original patch}
Linux-commit: {git commit hash of upstream kernel patch}

The tag (e.g. , , or) can be used to {Organization}-bug-id: Intel-bug-id: ORI-123 Xyratex-bug-id: MRP-123 Oracle-bug-id: b=12345
track this patch in other bug databases.

Lustre-commit: and are used to reference the original version of a patch that is being ported to another branch.Lustre-change:

https://wiki.whamcloud.com/display/PUB/Signed+Off+By
https://wiki.whamcloud.com/display/PUB/Signed+Off+By

Patches pushed the upstream kernel should include to reference the JIRA URL for the LU ticket, in the form to Intel-bug-id: https://jira.hpdd.
. Patches should also include the permalink URL for the Gerrit patch, in the form LU-nnnnintel.com/browse/ Reviewed-on: https://review.

. The upstream maintainers do want to have commit hashes for non-kernel commits, so upstream patches should include whamcloud.com/nnnnn not not
the tag.Lustre-commit:

Patches ported the upstream kernel, the patch should keep the original commit summary line, with slight modification to conform to Lustre standards: from
include the JIRA LU ticket number, and replace "staging" and other pathnames in the summary with a subsystem. The tag is used to Linux-commit:
hold the upstream kernel commit hash. The original author should be kept as the author of the patch using the option, as well as the git --author
original tag(s).Signed-off-by:

Test-Parameters: is used to specify additional testing parameters for this patch, see .Changing Test Parameters with Gerrit Commit Messages

Examples of good commit comments

LU-477 ldiskfs: allocate s_group_desc/s_group_info by vmalloc()

Add the patch to the RHEL6 ldiskfs patch series.

Large kmalloc() for sbi->s_group_desc and sbi->s_group_info can fail
for large filesystems (typically over 16TB), which will cause the
"not enough memory" error while mounting. This patch makes allocation
fall back to vmalloc() if the kmalloc() failed, as what was done for
sbi->s_flex_groups.

To avoid colliding with an valid on-disk inode number, EXT4_BAD_INO
is used as the number of the buddy cache inode.

The patch also incorporates the following upstream kernel fix:

 Linux-commit: 32a9bb57d7c1fd04ae0f72b8f671501f000a0e9f
 ext4: fix missing iput() of root inode for some mount error paths
 https://bugzilla.kernel.org/show_bug.cgi?id=26752

Signed-off-by: Yu Jian <yujian@whamcloud.com>
Change-Id: I3950425835ea7f2968ceb2edbc622e3ff3ed8545

https://wiki.whamcloud.com/display/PUB/Changing+Test+Parameters+with+Gerrit+Commit+Messages

LU-723 build: Enhance lustre/ldiskfs build system

Enhance the lustre/ldiskfs build system so it is more robust, flexible,
and consistent with lustre/zfs build system. This change is being made
in the interest of standardizing the infrastructure around backend
filesystems.

This change does not effect the current behavior of the --with-ldiskfs,
--enable-ext4, or --with-ldiskfsprogs configure options. However, it
does remove the obsolete --with-ldiskfs-inkernel configure option which
was only used by LLNL. It also adds the --with-ldiskfs-obj configure
option which improves flexibility. And the --enable-ldiskfs-build
configure option to support building against the lustre-ldiskfs-devel
package. The behavior of these options is consistent with their ZFS
counterparts, see commit 8c7266c for further details.

--enable-ext4 enable ldiskfs build using ext4
--enable-ldiskfs-build enable ldiskfs configure/make
--with-ldiskfs=path set path to ldiskfs source
--with-ldiskfs-obj=path set path to ldiskfs objects
--with-ldiskfsprogs use alternate names for ldiskfs-enabled e2fsprogs

Sample ./configure results when building lustre and ldiskfs using
the kernel-devel and kernel-debuginfo-common packages.

checking whether to enable ldiskfs... yes
checking ldiskfs source directory... /home/behlendo/src/git/lustre/ldiskfs
checking ldiskfs object directory... /home/behlendo/src/git/lustre/ldiskfs
checking ldiskfs module symbols... Module.symvers
checking ldiskfs source release... 3.3.0
checking whether to use ext3 or ext4 source... ext4
checking ext4 source directory... /usr/src/debug/.../fs/ext4
checking whether to build ldiskfs... yes
checking for /home/behlendo/src/git/lustre/ldiskfs/configure... yes
checking for /usr/src/debug/.../fs/ext4/dir.c... yes
checking for /usr/src/debug/.../fs/ext4/file.c... yes
checking for /usr/src/debug/.../fs/ext4/inode.c... yes
checking for /usr/src/debug/.../fs/ext4/super.c... yes
checking if ext4_ext_walk_space() takes i_data_sem... yes
checking if LDISKFS_SINGLEDATA_TRANS_BLOCKS takes sb as argument... yes
checking if ldiskfs_discard_preallocations defined... yes
checking if ldiskfs_ext_insert_extent needs 5 arguments... yes

In the context of this change additional cleanup has been done and
all of the ldiskfs specific code relocated to lustre-build-ldiskfs.m4.

Note that this change moves us closer to supporting patchless Lustre
servers with ldiskfs. Once the remaining kernel patches for Lustre
are dropped you will be able to build Lustre using the distribution
provided kernel-devel and kernel-debuginfo-common packages.

This change also incorporates ORI-340 commit f604951, which ensures
that the Module.symvers file will cleanly include the symbols for all
enabled Lustre backends. While the only backend supported by master
right now is ldiskfs this brings the master and orion branches into
sync in this regard.

Change-Id: I6f13f266944ec6967f4d7705a30b83ab8e577b15
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Prakash Surya <surya1@llnl.gov>

Patch porting examples

For patches backported from master to a Lustre maintenance branch (e.g.) there are some conventions to follow so that the changes/fixes can b2_10
more easily be tracked across branches. The simples method for porting a patch from one branch to another is to use the button on the "Cherry Pick"
patch directly in Gerrit, which can be used for patches that apply cleanly to the specified target branch as long as it is in the same Git
repository. Alternately, if this is not possible, use from the command line to pull the patch onto the git cherry-pick {commit_hash|branch}
(current) branch where you want the patch to land, and then using the normal patch submission process to push the patch to Gerrit or submit it to the
upstream kernel. This will apply the whole patch (as best as is able, and show conflicts where needed), copy the commit message, preserve the original
patch author. With luck, there will not be any patch conflicts and no further work is needed. If necessary, the patch conflicts need to be resolved before
committing the patch. For the commit message:

the entire commit message, including the summary line, should be copied from the source patch without any changes
the original of the patch should be kept. This should be done automatically when using but is lost when applying the Author git cherry-pick
patch manually, so should be usedgit commit --author="Original Author <author@email.com>"
the line of the original author should also be keptSigned-off-by:
the person who commits the ported change should add a line with their name and email following the original oneSigned-off-by:
the original lineChange-Id:
the original lines can be kept, and Gerrit will automatically add them as reviewers to the new patchReviewed-by:
the and lines should be removed from the new commit message, though any lines Tested-by: Maloo Tested-by: Jenkins Tested-by:
from real people can be kept
the line should be changed to "Reviewed-on: http://review.whamcloud.com/nnnnn" "Lustre-change: http://review.

 (please use the "permalink" Gerrit URL format as shown)whamcloud.com/nnnnn"
the line should be changed to "cherry picked from commit abcdef1234567890" "Lustre-commit: abcdef1234567890"
any non-trivial changes to the original patch should be described the original and lines before your after Signed-off-by: Lustre-commit:
own lineSigned-off-by:
if two or more patches are being combined into a single patch (normally only when there are bugs in the original patch that were fixed in later
commits) the full commit message from each patch should be kept, along with the and and Signed-off-by: Lustre-commit: Lustre-

 lines of each commitchange:

Patches ported from master to maintenance branch

For example, porting a patch from master to or similar:b2_10

LU-4725 mdt: child-parent lock ordering in rename

Change rename so that it always has parent-child lock ordering,
otherwise it may deadlock with other operations.

Lustre-commit: 4e308ef74f271ec7e19917e3c0f88586537582c3
Lustre-change: http://review.whamcloud.com/9538

LU-4725 obd: lu_object_find_at hung

lu_object_find_at hangs if called two times and object is removed
in between. It makes mdt_rename_sanity not workable for rename.
Change mdt_rename_sanity to work on existing object.

Lustre-commit: b7c72ec1ddeda2cf94ea151f974d3f94e3a7d1ed
Lustre-change: http://review.whamcloud.com/10484
Xyratex-bug-id: MRP-1700

Test-Parameters: alwaysuploadlogs \
 envdefinitions=SLOW=yes,ENABLE_QUOTA=yes,ONLY=54 \
 ossjob=lustre-b2_4 mdsjob=lustre-b2_4 ossbuildno=73 mdsbuildno=73 \
 testlist=sanityn

Signed-off-by: Vitaly Fertman <vitaly_fertman@xyratex.com>
Signed-off-by: Rahul Deshmukh <rahul_deshmukh@xyratex.com>
Change-Id: Ic9ce52bfcd8788834347fba155cc8c6be674dcd8

Patches ported from master to upstream kernel

These are treated similarly as patches ported to maintenance branches (keep all comments and lines from the original patch) add new Signed-off-by:
 and comments afterward, but replace the line (which doesn't mean anything in the upstream kernel git) with Signed-off-by: Lustre-commit: Intel-

 so that the original bug can still be identified. When submitting patches upstream, please also follow the bug-id: {jira_URL} Documentation
 instructions, and use to generate the CC list for the patch. If in doubt, submit /process/submitting-patches.rst scripts/get_maintainer.pl

the patch only to first to get feedback from the Lustre maintainers.lustre-devel

http://lustre.org/mailing-lists/

lustre/llite: simplify dentry revalidate

Lustre client dentry validation is protected by LDLM lock, so
any time a dentry is found, it's valid and no need to revalidate
from MDS, and even it does, there is race that it may be
invalidated after revalidation is finished.

Reviewed-on: http://review.whamcloud.com/7475
Intel-bug-id: https://jira.hpdd.intel.com/browse/LU-3544
Signed-off-by: Lai Siyao <lai.siyao@intel.com>
Signed-off-by: Oleg Drokin <oleg.drokin@intel.com>

	Commit Comments

